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Abstract

This article asks if God purposefully designed the number 37 into His spoken word

(the �rst verse of the Bible, Genesis 1:1), into His created life (the genetic code) and

into the names of His Son (�Jesus� and �Christ�). If so, the connections are profound.

God creates through His word, and since the creation has a mathematical structure

it shouldn't be surprising to �nd such structure also in the word. And since the Bible

entitles Jesus as both God's word (Joh 1:1) and life (Joh 14:6), it is not far-fetched

if similar patterns would also be found in the names of our Lord.

More speci�cally, we analyze divisibility patterns of alphanumeric coding schemes

from Genesis 1:1 and the words Jesus Christ, as well as nucleon numbers of amino

acid groups, derived from the genetic code. We introduce a null hypothesis that these

patterns are generated by chance, and estimate the p-value, i.e. the probability for

the observed structures to occur under this null hypothesis. It is found that the

p-value of Genesis 1:1, the genetic code and the words Jesus Christ, after a generous

correction for multiple testing, are 1.7×10−3, 3.0 ·10−14, and 3.7×10−3 respectively,
whereas the combined p-value for all three divisibility patterns is at most 4.6 · 10−11
after multiple testing correction.

Due to the objective and inerrant nature of mathematics, we argue that the

abovementioned structural patterns are di�cult to deny. And since both the Bible

and the creation are branded by the same number 37, it seems reasonable to conclude

that it is the same Intelligence behind both.

1 Introduction

In his now classical paper from 1960 - The Unreasonable E�ectiveness of Mathematics in
the Natural Sciences - Nobel laureate Eugene Wigner pondered over the fact that nature is
mirrored in mathematical formalism (Wigner, 1960). He found the bond so profound that
he even associated it to a miracle: �The miracle of the appropriateness of the language
of mathematics for the formulation of the laws of physics is a wonderful gift which we
neither understand nor deserve.�
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In this article we investigate if what Wigner referred to as a miracle may be taken one
step further. We examine the possibility that in the same way as natural law contains
a mathematical structure, so does God's word. Even if this sounds unfamiliar, it should
not come as a surprise since God uses His word to create the very same laws. �By faith

we understand that the world was created by the word of God.� (Hebr 11:3, RSV)

We also investigate if the patterns in God's word may also be found in God's creation.
The pinnacle of the creation is life, and therefore we investigate if life (as de�ned by the
genetic code) also contains mathematical patterns. And since Jesus Christ is both God's
Word (Joh 1:1) and God's Life (Joh 14:6) - even the Word of Life (1 Joh 1:1) - maybe
also His names share the same pattern?

In this article we conclude that God's spoken word (speci�cally the �creation verse� Gen-
esis 1:1), God's living Word (as the names of our Lord) and God's creation (speci�cally
the genetic code) all contain mathematical patterns, and that these patterns ought to
be a result of design. Not only this, but we also conclude that it is the same pattern,
built on the number 37, in these three occurrences, probably demonstrating it is the same
Designer behind them all. In statistical terms we �nd that the probability for the patterns
to occur by chance is well below 10−10.

2 What we do not claim

We are keenly aware that many fellow-Christians are dubious of exploring the Bible with
the aim of detecting mathematical patterns. And rightly so! The area is loaded with
unfounded speculation, wishful thinking, and outright errors. Therefore, we feel a need
from start to stipulate what we do not claim:

2.1 We �nd no hidden messages in the Scriptures

The patterns in Scripture that we aim to show must not be confused with �codes� carrying
secret messages or esoteric knowledge addressed to a select few with special insight. The
Bible is written to be understood and applied to the Christian life, so why would its
Author camou�age its teachings behind curtains of enigmatic mathematics? We reject all
forms of mysticism, kabbalism and occultism.

However, we do believe that the possible patterns have another purpose than that of ex-
tending our knowledge from what is expressed in the plain text. We believe the structures
are there to validate the text. They are deliberately incorporated in the Bible by God as
His authenticity seal. The same is true for the genetic code. Its possible patterns based
on the number 37 has nothing to do with its e�ciency in coding for various lifeforms, but
they uncover an intellect composing the code.

2.2 We do not search for ELS in the Scriptures

Equal Letter Sequences (ELS for short) is the idea that additional information may be

2



extracted from a text by reading not every letter but every n:th letter, where n is a
positive or negative integer which may be arbitrarily large (Witztum et al., 1994, McKay
et al., 1999). Applied to the Bible, the method gives so many degrees of freedom that it is
di�cult to avoid observational bias: The text mass is large, n may be chosen freely, vowels
may be inserted freely (since they are not part of the original text), and many possible
�hits� are possible. For example, if searching for the holocaust, many words besides
�holocaust� would �t the expected scheme, words such as �Hitler�, �Göring�, �Nazism�,
�Auschwitz�, and �Jews�.

In our opinion, these pitfalls are abundant in Michael Drosnin's bestselling book The Bible
Code from 1997 and followed by two sequels from 2002 and 2010 respectively (Drosnin,
1997, 2002, 2010). Some argue that the drawbacks of the ELS-method are less obvious in
Dr. Moshe Katz' Computorah from 1996 (Katz, 1996), but we do not make any claims
whatsoever regarding the applicability of the method.

2.3 We do not attach any symbolic meaning to the numbers of
Scriptures

The Scriptures seem to assign symbolic signi�cance to certain numbers. For example,
the Book of Revelation makes ample use of the number 7, probably representing spiritual
excellence. In his classical book Number in Scripture from 1894, E.W. Bullinger exposes
representational meaning to many numbers in the Bible, where the numbers are either
expressively stated or found as the quantity of certain objects or concepts (Bullinger,
1894). He also gives signi�cance to numeric values of Hebrew and Greek letters, identi-
�ed through certain alphanumerical coding schemes, a concept that will be explained in
Section 5.

Even if we do recognize symbolic meaning to some numbers in Scripture, this article
makes minimal use of them. They are not part of the main �ow of the argument, but on
a few occasions, we use them to speculate why God has chosen speci�c numbers, and not
others, in designing the codes.

2.4 We do not believe the detected patterns exist in other liter-
ature

Brendan McKay and others have found many ELS-codes in literature beside the Bible.
As an example, McKay discovered many words connected to the murder of J.F. Kennedy
in �ctional pieces such as Moby Dick and War and Peace (McKay et al., 1999, Bronner,
2016, p. 50-51). The conclusion is that the degrees of freedom for an ELS-code, exempli�ed
above, are so large that patterns may appear randomly in many texts that are extensive
enough.

However, due to the extensive statistical method we are using in this article, we argue
that there are patterns not explainable by chance.
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3 What we do claim

Our aim is to expose similar mathematical patterns based on the number 37 both in the
genetic code and in the Bible, mainly in its �rst verse and in the names of the Son of
God, �Jesus� and �Christ�. We believe this is a strong case for an intelligent Designer,
but the fact that the Bible and the genetic code seem to contain analogous patterns take
us even further: It would show that the patterns not only reveal an intellect far beyond
human capacity, but also that it is the very same Intelligence behind both the Bible and
the creation. And since we �nd the patterns of the Bible in both of its main languages
(Hebrew and Greek), it may further be used as evidence for the same Author behind both
the Old and the New testaments. By branding Scriptures with the number 37 we argue
that God authenticates His word, and by imprinting the genetic code with the very same
number, God veri�es He is also the Creator of life.

Finding mathematical patterns in the Scriptures should not come as a total surprise.
Creationists appropriately use mathematical regularities in natural law as evidence of a
Legislator. This Lawmaker creates by speaking into existence (Hebr 11:3), and since the
creation is mathematical so could God's word be. If the mathematical structure of the
Bible astonishes us, we must not forget that also the mathematical structure of nature is
a miracle. The di�erence maybe that we have become accustomed to the latter but not
to the former.

4 Methods and results

In an unambiguously manner, our method assigns integers (called counters), to di�er-
ent constituents (called words) of the Bible text and of the genetic code, and then by
combining these words in di�erent predetermined sets (called word groups), we �nd that
the groups' numeric values - obtained by adding the counters of the included words -
are divisible by 37 far more frequently than would be expected if they were the result of
chance. In our study, we analyze three di�erent assemblies of word groups (called word

group collections):

Genesis 1:1 The words are the 7 words of the Masoretic text, and the counters are their
Hebrew gematria values (explained in Section 5). There are 127 word groups formed
by permutating the words in all possible ways (excluding the trivial group with no
words).

The genetic code The 21 words consist of the 20 standard amino acids derived from the
genetic code together with the collection of atoms that these amino acids share (the
standard block). The counters of these words are their nucleon numbers. There are
13 word groups formed in pre-de�ned ways, mainly by bi- and trisecting the code.

�Jesus� and �Christ� These names of our Lord constitute 2 words, and the counters
are their Greek isopsephy values (explained in Section 5). There are 3 word groups
formed by selecting all nonempty subsets of words.
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Figure 1: The method used in this article for computing the combined, adjusted p-value
of Genesis 1:1, the genetic code and the words �Jesus Christ�, together with its results.

Figure 1 gives an overview of the method used. At the bottom are the 3 word group
collections with their respective words, word groups, and counters. Each box outputs a p-
value (described in Sections 6, 7, and 8 respectively) which is the probability of obtaining
the patterns of divisibility by 37 under the assumption that the null hypothesis is correct.
Our null hypothesis is that the patterns are generated by chance meaning, in short, that
a p-value gives the probability that the observed pattern appears by chance.

For an evolutionary biologist, another choice of null hypothesis for the genetic code may
appear as more relevant, which is that the observed patterns may be a result of chemical
evolutionary processes. We consider this possibility in Section A.7.3 of the appendix and
include the resulting very conservative p-value estimate as blue text in Figure 1.

The p-values need to be safeguarded against observational bias, a concept which means
that a hypothesis is tested only for an observed pattern while other patterns, with possibly
as astonishing results, are disregarded. Therefore, in Section 9 we adjust for multiple
testing, that is, the probability of randomly having at least one equally remarkable pattern
as the one observed when certain factors are varied: for Genesis 1:1 we allow for other
Bible verses and other Hebrew gematria schemes, for the genetic code we allow for other
subgroups of codons, and for �Jesus� and �Christ� we allow for other names of the Lord.
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In Section 10 we merge the three p-values (adjusted for multiple testing) into one single
p-value. The combined p-value is also adjusted for multiple testing because other divisors
than 37 may give as remarkable results. The so constructed �nal p-value is low, 4.6×10−11.
A sensitivity analysis, with the combined p-values for other multiplte testing scenarios, is
also provided in Section 10.

After showing (in Section 11) that all three word group collections contain other interlaced
codes that further strengthen the conclusion, we conclude in Section 12 that the smallness
of the �nal p-value suggests that there is something or Someone else at work besides
randomness. We argue that there are mathematical patterns and that these are a result
of �ne-tuning.

All mathematical details are placed in an appendix (Sections A.1-A.7).

5 Alphanumerical coding schemes

Today we use dedicated symbols (1, 2, 3, . . .) to express integers, but in many ancient
cultures, numeric values were instead assigned to the letters of the alphabets. Also words
and phrases could be assigned values by simply adding the values of their constituent
letters. This means that a written text not only conveyed semantic meanings on di�erent
levels but also numeric values that may be analyzed with arithmetic methods.

Figure 2: The Hebrew and Greek methods of assigning numbers to letters. In the Hebrew
table, wherever two letters are given, the second one is used at the end of words. In the
Greek table, the second lowercase letter for sigma is used at the end of words. Letters
marked with an asterisk are extinct.

In Hebrew, the procedure of assigning values to letters is called gematria. (There is an
extended application of the concept where each number is given a symbolic or mystic
meaning, but as we have acknowledged in Section 2, we do not advocate such connections
between gematria numbers and meanings.) The Jewish Encyclopedia lists a number of
di�erent gematria schemes (Skolnick et al., 2007), i.e. di�erent ways of assigning numbers
to letters, and we have employed the one called mispar hechrachi described in Figure 2.
Our reason is threefold:
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� It is the standard method and most commonly used.

� It is the most straightforward method in that the value of each letter is based on
its position in the alphabet (Mispar hechrachi means �absolute value�).

� Its principle of assigning numbers to letters equates the principle of the correspond-
ing Greek alphanumerical scheme. (Letters 1-9 give ones, 10-19 give tens, and 20−n
give hundreds where n = 22 for Hebrew and n = 28 for Greek.)

In Greek, the corresponding practice is called isopsephy, and its cipher is also de�ned in
Figure 2. Unlike Hebrew gematria with many possible alphanumerical conversion schemes,
we have found only one used in isopsephy, and, as said, its principle corresponds to the
Hebrew mispar hechrachi.

The Hebrews began using gematria after the Old Testament was written, which means
that the key to decipher a possible code was discovered after the code was generated.
In our opinion this excludes human interventions in creating both the code and the key.
We believe that when God inspired the writers of the Scriptures, He led them to include
mathematical patterns but had other men to discover them later. This is a form of
progressive revelation, but not by adding to the Scriptures but by uncover what is already
there.

Figure 3: The gematria values associated with the letters and words of Genesis 1:1, and
how the words are combined into 127 word groups. The middle word (marked with an
asterisk) is a grammatical construction that cannot be translated. Note that in Hebrew
the text is read from right to left.
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6 37 in Genesis 1:1

We may now proceed to examine the �rst verse of the Bible with the intent of �nding
an alphanumeric pattern. We do this by forming all possible word groups and examining
how many of these have gematria values divisible by 37. Figure 3 shows the numeric
values associated with each letter and each word of this �rst verse of the Bible and how
the words are combined into 127 possible groups.

Naturally, we will expect every m:th word group to be divisible by m from pure statistical
reasons. For example, if we set m = 5, we would expect 25 or 26 word groups to be
divisible by 5 since 127/5 = 25.4. And in our case, 3 or 4 word groups ought to be
divisible by 37 since 127/37 = 3.4. In reality however, 23 of the word groups are divisible
by 37 (see Table 3 in the appendix), which is far more often than may be expected from
statistical reasons. In Figure 4 we display this fact intuitively, and in Section A.4.4 we
calculate its p-value to 4.3 · 10−5.

Figure 4: The bars show the actual number of word groups in Genesis 1:1 divisible by m,
where m is displayed at the horizontal axis. The dashed line shows the expected number
of such groups calculated as 127/m. As shown by the red bar, m = 37 stands out.

We would like to give recognition to Vernon Jenkins (Jenkins, 2015) from whose website
most of the information concerning 37 in Genesis 1:1 is derived.

7 37 in the genetic code

Vladimir Shcherbak (PhD) and Maxim Makukov (MS) have - evidently without any
biblical ambitions - discovered arithmetic regularities based on the number 37 in the
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genetic code. This is explained in detail in Shcherbak (2003) and Shcherbak and Makukov
(2013). In the latter paper the authors draw the conclusion: �Accurate and systematic,
these underlying patterns appear as a product of precision logic and nontrivial computing
rather than of stochastic processes (the null hypothesis that they are due to chance coupled
with presumable evolutionary pathways is rejected with p-value 10−13).� They assert that
the proposal that terrestrial life is intentionally seeded cannot be ruled out. We fully agree
but want to extend their conclusion to identify the One who was doing the �seeding�. Since
the genetic code is hallmarked with the same number (37) as Genesis 1:1, in our view, its
originator has introduced Himself as the God of the Bible.

All our genetic patterns are from Shcherbak and Makukov. However, we will use a some-
what di�erent approach. Their p-value does not incorporate divisibility by 37, while ours
does, motivated by the fact that Genesis 1:1 has this number in its divisibility patterns.
In their null hypothesis, the observed patterns are a result of random evolutionary pro-
cesses, while in ours they are a result of chance in terms of random assignment of nucleon
numbers. (However, in Section A.7 we also test a biologically motivated null hypothesis.)

A basic understanding of molecular biology is necessary to understand our method, and
therefore we start by investigating some basics facts. The DNA-molecule stores its infor-
mation as nitrogen bases which are transcribed into mRNA-molecules. When the genetic
machinery translates this information into a sequence of amino acids that are about to
become a protein, it reads the bases three and three. The bases may therefore be regarded
as letters in a genetic language and the three-letter groups as words (called codons). There
are 4 di�erent letters/bases (denoted T, C, A and G), and therefore there are 43 = 64
possible triplets which code for the 20 amino acids in the library of life (called standard

amino acids). This means that di�erent codons may code for the same amino acid or al-
ternatively, the genetic language contains synonyms. Three of the codons do not code for
any amino acid at all but constitute stop-codes to the translation machinery. (In RNA,
T is replaced by U but that is irrelevant to our discussion here.)

The letters/bases of DNA come in two di�erent types: purines and pyrimidines. The
main di�erence is that the nitrogen ring in purines is fused to an imidazole ring whereas
in pyrimidines it is not. A and G are purines while T and C are pyrimidines. To reduce
the burden of keeping track of which is which, from now on purines are simply called
�A/G� and pyrimidines �T/C�.

The standard DNA codon table de�nes which triplet of bases codes for which standard
amino acid. This translation scheme is universal for the whole biosphere, although a few
small variants are known (Knight et al., 2001). One way to put it is that all life forms
�speak� the same genetic language. The table is depicted in Figure 6 where the �rst letter
in each codon appears on the four main rows, the second letter in the four columns and
the third letter within each square.

The divisibility patterns searched for are revealed by an analysis of the standard codon
table. As numbering scheme for the amino acids, we use their numbers of nucleons, i.e.
the protons and neutrons in their atomic nuclei. (Since STOP-codons do not code for
any amino acid, their nucleon counts are set to zero.) This is appropriate since it well
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distinguishes the di�erent amino acids, and it is a countable rather than a physically
measurable parameter. In this way nucleon numbers become arithmetical units inside
the genetic code that may be examined for divisibility patterns. We identify several
unambiguously de�ned groups of amino acids, based on where and how many times these
acids appear in the codon table, and then we investigate whether the groups' constituent
amino acids have sums of nucleon numbers divisible by 37. If this occurs signi�cantly
more often than expected from statistical reasons, a purposeful signal in the code may be
inferred. In total, we have identi�ed 13 groups of amino acids which exhibit divisibility
patterns based on 37, and we label these patterns P1-P13 below. It is crucial that these
groups are formed from pre-de�ned criteria, since a freedom to form groups in arbitrary
ways would greatly increase the probability of �nding a searched-for pattern.

Figure 5: Numeric values for life's 20 amino acids. The most common isotope of carbon
(C) has 12 nucleons, hydrogen (H) 1, nitrogen (N) 14, oxygen (O) 16, and sulfur (S) has
32 nucleons.

P1-P2: Nucleon counts for complete set of standard amino acids

Figure 5 gives some basic data for each standard amino acid. The graphic in the upper left
corner illustrates a general amino acid which consists of a standard block, H2NCHCOOH
(the same in all amino acids), and a side chain R (unique to each amino acid). The table
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lists the number of C-, H-, N-, O-, and S-atoms in each amino acid and the corresponding
nucleon counts for both for the full amino acid molecules and for their side chains R.

(It should be noted that proline has a special chemical bound which causes one of the
hydrogen atoms (one nucleon) in the standard block to chemically belong to the side
chain. However, here it is considered as part of the standard block to make the structure
uniform with the other amino acids. Shcherbak and Makukov call this the activation key

of the code since there is no natural reason for such nucleon transfer. Instead it appears
arti�cial, which is what seems to be its purpose. Since the discovered patterns in this way
become virtual and not physical, they are protected from any natural explanation.)

P1 emerges as the nucleon count of the standard block of each amino acid, 74 (= 2 · 37).
In Figure 5, it appears as the di�erence between each amino acid's full molecule nucleon
count and the nucleon count of its sidechain.

P2 emerges when multiplying the amino acids' nucleon counts by the number of times
they appear in the codon table. The sum for all amino acids' sidechains is 3404 (= 92 ·37),
also divisible by 37. (Naturally, also the nucleon sum for the full molecules is divisible by
37, but this is redundant information since we have already concluded that each standard
block is divisible by 37.)

P3-P9: Bi- and trisections of the full-sized genetic code table

In P3-P9, the code table is divided into three levels according to certain well-de�ned rules.
P3 is a bisection of the full code table, P4-P6 are bisections of the so obtained results,
and P7-P9 are further subdivisions into still smaller fractions. For each so obtained
group, divisibility by 37 is probed for the nucleon counts of its parts. The calculations
are performed for the side chains of the amino acids, but since a standard block has 74
nucleons (which is divisible by 37), analogous results are obtained if the full amino acid
molecules are considered. Figure 6 illustrates the procedures.

In P3, the codons of the full genetic table are grouped depending on whether they contain
duplicate bases (blue in Figure 6) or not (grey). The �rst group contains 36 codons with
a nucleon sum of 1998 (= 54 · 37) and the second group 28 codons with a sum of 1406
(= 38 · 37). Both are divisible by 37 but one of the groups is redundant since their sum
is already accounted for through P2.

In P4, codons with two identical bases (blue in P3) are subdivided depending on whether
these double bases are T/C or A/G. Both groups contain 18 codons with a nucleon sum
of 999 (= 27 · 37).

In P5, the same codons (i.e. blue in P3) are subdivided depending on whether the re-
maining unique base is T/C or A/G. The �rst group contains 18 codons with a nucleon
sum of 888 (= 24 · 37) and the second group 18 codons with a sum of 1110 (= 30 · 37).

In P6, codons without duplets (grey in P3) are subdivided based on several rules, the
details given in Figure 5a of Shcherbak and Makukov (2013). �And Rumer� in P6 in
Figure 6 indicates that also the inversions T ↔ G and A ↔ C, the so-called Rumer's
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Figure 6: P3: The full-sized codon table (top left) is bisected into two groups resulting
in nucleon counts divisible by 37. P4-P6: P3 is subdivided in three ways resulting in
further divisibility by 37. P7-P9: Still further subdivisions result in new patterns with
divisibility by 37. All details are given in the text. The nucleon counts for the amino
acids' side chains are given in the codon table giving the reader an opportunity to control
the calculations.

transformation (Rumer, 1966), are necessary for an unambiguous sorting into the two
halves.

In P7-P8, the A/G doublets of P4 (grey) are trisected into three groups: AAx/xAA (P7),
GGx/xGG (P8), and AxA/GxG (redundant), where x is the unique base of each codon.
(The third group is redundant since the sum of all three groups' nucleon counts is already
accounted for through P4.) All three groups contain 6 codons with nucleon sums of 333
(= 9 · 37).

In P9, the A/G unique letter group of P5 (grey) is bisected depending on whether the
unique letter appears as Axx/Gxx or not (i.e. xAx/xGx/xxA/xxG). The �rst group con-
tains 6 codons with a nucleon sum of 333 (= 9 ·37), and the second 12 codons with a sum
of 777 (= 21 · 37).
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P10-P12, Bisections of the contracted genetic code table

So far, the results have been based on the full-sized genetic code. In the so-called con-
tracted code the redundancy has been eliminated, meaning that amino acids with syn-
onymous codons are counted only once. Redundancy is de�ned per square in the codon
table (called codon family) of Figure 7, implying for example that Leu is counted twice,
once in family TTx (with redundancy 2) and once in CTx (with redundancy 4).

Figure 7: The contracted codon table (identi�ed by blue codons in the table) together
with two of its bisections that result in nucleon counts divisible by 37. The details are
given in the text. The nucleon counts for the amino acids' side chains are given in the
codon table giving the reader an opportunity to control the calculations.

In P10, all 25 codons in the contracted code are included, giving a nucleon sum of 1443
(= 39 · 37).

In P11, the codons of the contracted codon table are grouped depending on whether they
belong to a full codon family (i.e. the last letter is insigni�cant) or a split codon family
(i.e. the last letter is signi�cant). The �rst group is green in Figure 7 and contains 8
codons with a nucleon sum of 333 (= 9 · 37), and the second group is grey and contains
17 codons with a sum of 1110 (= 30 · 37).

In P12, the codons of the contracted codon table are grouped depending on whether the
�rst letter is T/C or A/G. The �rst group is green in Figure 7 and contains 13 codons
with a nucleon sum of 814 (= 22·37), and the second group is grey and contains 12 codons
with a sum of 629 (= 17 · 37).
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P13, Decomposition of the codon table into all its bases

In the �nal pattern we decompose the codons of the standard code table into 64 · 3 = 192
separate bases/letters. Each base attains the nucleon count of the amino acid of the codon
it is part of. Since the sum of all amino acids' sidechain nucleons is 3404 (pattern P2),
and since each codon contains 3 bases, the total nucleon count for the decomposed codons
is 3 · 3404 = 10, 212.

In P13, we split the decomposed bases into two groups, T and A/C/G (Figure 8). The
�rst group contains 1 codon with 3 Ts (TTT), 9 codons with 2 Ts, and 27 codons with 1
T, giving a nucleon count of 2664 (= 72 · 37). The second group is redundant since the
sum of the nucleon counts of both groups is accounted for in P2.

Figure 8: Pattern P13.

Summary of all patterns P1-P13

Figure 9 summarizes the thirteen appearances of 37 that are extracted from the genetic
code. In Section A.3 we calculate the probability that this is due to chance to 4.1 · 10−21.

8 37 in Jesus Christ

With the Greek isopsephy scheme (in Figure 2), the numeric values of �Jesus� and �Christ�
are 888 (= 24 · 37) and 1480 (= 40 · 37) respectively (see Figure 10). Both are divisible by
37, which gives us two new independent occurrences of 37. In Section A.4.3, we calculate
the probability for this to happen by chance to 7.3 · 10−4.
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Figure 9: Summary of the thirteen patterns (P1-P13, referred to as word groups) in
the genetic code that show divisibility by 37. P1 is based on the nucleon count for the
standard block while P2-P13 are based on the nucleon counts for the sidechains.

9 Multiple testing

The probabilities (p-values) we have calculated so far have not been safeguarded against
observational bias, which means we run the risk of testing only for patterns that con�rm
our hypothesis while overlooking other patterns which may surprise us as much. To limit
this risk, in this section we perform multiple tests of other potential and similar types of
patterns and adjust our p-values accordingly. The resulting p-values give the probability of
by chance having at least one equally remarkable divisibility pattern as the one observed.
Section A.6 gives the details.

We perform multiple tests for the p-values of G11, GC, and JC, as illustrated in Figure 1.
These tests are carried out even though we argue that external factors make our selection

Figure 10: The Greek way of assigning numbers to letters applied to the two names of
the Lord from Matt 1:1. Both �Jesus� and �Christ� are divisible by 37.
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of word group collections straightforward and �natural�, implying our observational bias
is small. We motivate our choice of parameters for each of the p-values as follows:

� For the mathematical pattern of Genesis 1:1 (G11), we test for alternative Bible
verses and other gematria schemes that may display similar patterns. However, we
believe the selection of the �rst verse of the Bible is �rmly established by the fact
that it proclaims God's creation and is in some sense the theological counterpart of
the genetic code which forms the basis of life. Since it also connects to Jesus Christ
as Creator and Giver of life, it seems that no other verse of the Hebrew Bible could
replace it. And our reasons for selection mispar hechrachi as the Hebrew gematria
scheme are given in Section 5.

� For the genetic code (GC), we adjust the p-value for other possible and bio-
logically signi�cant word groups (than those of Figure 9) that may give divisible
patterns based on 37. In Section A.6, we identify 12 other (than P1-P13) �non-hit�
word groups that are formed in similar ways but do not display such divisibility pat-
terns. This means that our multiple testing must include at least these 12 groups
(plus others that we possibly have not envisioned).

� For �Jesus� and �Christ� (JC), we test for other Greek names of the Lord such
as �Lord�, �Logos�, and �Emmanuel�. However, this may be overcautious since by far
the most used names in the New Testament are �Jesus� and �Christ�, by themselves
or together. (�Lord� is also used many times, but it is not a name but a title and
not used exclusively for Jesus.)

10 Combined p-value

In Sections 6-8, we found that divisibility patterns based on the number 37 frequently
appear in the numerical schemes of Genesis 1:1 (G11), the genetic code (GC), and Jesus
Christ (JC) respectively. We derived probabilities (p-values) for the appearance of these
patters, assuming the word- and nucleon-numbers were randomly generated (the null
hypothesis). Then in Section 9 we adjusted the p-values of G11, GC, and JC for the
multiple testing scenario of Figure 1. These three probabilities are still small after such an
adjustment, but of course the combined probability that all three word group collections
(G11, GC, and JC) show the same numerical pattern, is even smaller. Therefore, in
Sections A.5-A.6 we merge the three individual p-values (after adjustments for multiple
testing) into a single combined p-value, which strengthens the conclusion that the three
number schemes are not formed by chance. The combined p-value is shown to be 1.2·10−12
(see Figure 1).

We also adjust the combined p-value for multiple testing because other divisors than 37
may give as remarkable results. For the multiple testing scenario of Figure 1, such a
correction gives a combined p-value of 4.6 · 10−11. However, once again we believe our
choice of divisor is the most straightforward one based on external factors. The number
3 stands for what is real, substantial, and complete, while 7 is the number of spiritual
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perfection (Bullinger, 1894). The number may also be interpreted as �three sevens� which
is 777, a number sometimes used to symbolize God, His character, and His works.

Figure 11 shows the adjusted p-values for 6 di�erent multiple testing scenarios with dif-
ferent choices of parameters. The �rst row corresponds to a scenario with no adjustment
for multiple testing (including only the 13 word groups P1-P13 for GC), the second row
corresponds to a mimimal amount of adjustment for multiple testing (including 12 addi-
tional word groups for GC, which are the 12 �non-hit� groups that we identi�ed), and the
rest give more and more conservative estimates. The most conservative multiple testing
Scenario 6 is the one depicted in Figure 1. As may be seen, the combined p-value remains
staggering low even for the most conservative adjustments for multiple testing. Therefore,
we conclude that the word and nucleon counts of G11, GC, and JC are �ne-tuned, and
that the observed patterns point towards an Intelligent Designer.

Figure 11: The combined p-value adjusted for six scenarios of multiple testing.

11 Further evidence

Besides patterns divisible by 37, G11, GC, and JC contain other features that indicate
they are nonrandom and the result of design. We present some of this evidence in this
section, and although we do not quantify it, we suggest it strengthens the inference of an
intellect behind both the Bible and the genetic code.

11.1 Genesis 1.1

Besides the divisibility pattern based on 37, G11 shows other divisibility patterns based
on the number 7. (All below numbers may be veri�ed through Figure 3.)

� Genesis 1:1 has 7 words.

� The verse has 28 (4× 7) letters.
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� The 3 �rst words (from right to left) have 14 (2 × 7) letters, and the 4 last words
have 14 (2× 7) letters.

� The 3 main words (God, the heaven, the earth) have 14 (2 × 7) letters altogether,
and the remaining part of the verse has 14 (2× 7) letters.

� The middle word with its left neighbor has 7 letters, and so does the middle word
with its right neighbor.

� The 3 main words (God, the heaven, the earth) have a numeric value of 777 (111×7).

� The sum of the numeric values of the �rst and the last letters in each word (14
letters) is 1393 (199× 7).

� The sum of the numeric values of the �rst, the two middle and the last letters (4
letters) is 133 (19× 7).

It should be noted that since both 7 and 37 are prime numbers, the two divisibility
patterns are independent of one another. This in turn means that the two code systems are
superimposed. Like in a crossword puzzle, one letter cannot be changed to �t an intended
pattern without simultaneously changing another, leading to an exponentially increasing
complexity. The semantic meaning of the letters is a third superimposed code, and since
the divisibility patterns based on 7 are applicable to both the number of letters/words and
their gematria values, we may count a fourth superimposed code. Although a quantitative
analysis of these superimposed codes must account for multiple testing, it is still reasonable
to conclude that the complexity of such a multiple code system is beyond human ability.

11.2 The genetic code

Besides the patterns based on the nucleon counts, GC seems to contain another trace of
design that is based on the molecular weights of the constituent amino acids. A particular
chemical element comes as di�erent isotopes which di�er in neutron number and therefore
in nucleon number. The nucleon counts we have used so far are integers applied to the
most common isotopes in nature which are also radioactively stable (1H, 12C, 14N, 16O
and 32S). In contrast, molecular weights are real numbers applied to ordinary mix of
isotopes present in nature. These weights are given in the atomic mass unit, u, where
1 u is equal to the weight of one nucleon, or to be exact, it is de�ned as 1/12 of the
weight of a carbon isotope with 6 protons and 6 neutrons. Figure 12 gives the molecular
weights of the 20 standard amino acids of life with the normal mix of C-, H-, N-, O-, and
S-atoms in nature. Remarkably, the sum of the molecular weights of all standard amino
acids is divisible by 37, not only once but twice. The precision is high. With molecular
weights from Wikipedia (as in the �gure), an accuracy of one decimal is achieved. Since
the natural abundance of isotopes varies both in space and time, an enhanced accuracy
would probably be meaningless.

As for Genesis 1:1, the genetic code is �multiple� in that it is composed of several super-
imposed codes. Molecular biologists have discovered that a certain sequence of DNA may
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Figure 12: Molecular weights and their sum for the 20 standard amino acids.

be used in di�erent ways for di�erent needs by starting the decoding from di�erent places
along the molecular string or by reading it from di�erent directions, see for instance San-
ford (2008) and references discussed in Section A.7. We believe that such superimposed
codes are correctly used by creationists to verify the supernatural origin of life. We now
suggest it is time to do the same for the Bible, at least for its opening verse.

11.3 �Jesus� and �Christ�

These two names of our Lord share another dividend besides 37, namely 8. �Jesus� has
a Greek isopsephy numeric value of 888 (= 111 · 8), and �Christ� has a value of 1480
(= 185 · 8). Again, since 8 is not of factor of 37, these two code systems are independent,
i.e. superimposed on one another. Bullinger ascribes the meaning �the �rst of a new
series� to the number 8 (Bullinger, 1894), and indeed, Jesus is a new beginning. He rose
from the dead on the eighth day. (Other instances where 8 symbolizes a new beginning
are the 8 persons that disembarked the ark and circumcision which should be performed
on the 8th day.)
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12 Conclusions

Our conclusions are:

� The �rst verse of the Bible (G11), the genetic code (GC), and the names �Jesus�
and �Christ� (JC) contain mathematical patterns that reveal an intelligent origin.
The probability that those patterns are randomly generated (the p-value) is demon-
strated to be less than 4.6 · 10−11, after a correction for multiple testing.

� These patterns share the same internal structure (divisibility by 37) which reveals
that it is the same Intelligence behind God's Word (the Bible), God's Life (the
genetic code), even the Word of Life (Jesus). This Originator is the God of the
Bible.

� Beside these divisibility patterns (with 37 as divisor), there are other superimposed
codes in G11, GC, and JC which reduces the possibility of an origin by chance even
further.

� God has not been silent but uses the mathematical patterns of this article (and
probably other patterns) as a signature to reveal Himself.

In our opinion, arithmetic patterns like these make it impossible to continue denying the
Creator on intellectual grounds. They constitute God's Trilateral Fingerprint.
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A Appendix: Statistical analysis of divisibility patterns

from the Bible and the genetic code

In this appendix we analyze in more detail how likely it is that the frequent divisibil-
ity by 37 of numeric values of word groups (WGs) in Genesis 1:1 (G11, Section 6), the
genetic code (GC, Section 7) and the words Jesus Christ (JC, Section 8), is a chance
phenomenon. We start by introducing a general framework for word groups in Section
A.1. More speci�cally, we demonstrate that G11, GC, and JC are word group collec-

tions (WGCs). Assuming that numerical values have been assigned to all words and
word groups, the divisibility count is the number of word groups within the word group
collection that are divisible by a pre-speci�ed number m. Although m = 37 is of ma-
jor concern, our methodology is applicable for any prime number m. In Section A.2 we
introduce a statistical model for the numerical values of words, under a null hypothesis
that these have been generated randomly. This makes it possible to rigorously de�ne how
likely it is that the observed divisibility counts of G11, GC, and JC occurred by change
(their p-values), as well as how many standard deviations away from the mean these di-
visibility counts are. Then in Section A.3 we demonstrate how to calculate p-values of
word group collections with independent numerical values of its word groups, and apply
this to �nding the p-value of GC. In Section A.4 we treat the more general case of word
group collections whose word groups have numerical values that are not independent, and
apply this framework for �nding the p-values of JC and G11. The p-values of G11, GC,
and JC are merged into one single p-value in Section A.5. An adjustment for multiple
testing and observational bias is provided in Section A.6, whereas alternative choices of
null hypotheses are discussed in Section A.7. A summary of notation can be found in
Table 1.

Some parts of this appendix require knowledge of undergraduate courses in probability
theory and statistical inference. The contents of Gut (2009) and Held and Bové (2020),
for instance, is an as appropriate background.

A.1 General framework

In this section we provide a uni�ed framework for analyzing the divisibility patterns of
the numeric schemes of word group collections. This general framework is illustrated in
Table 2 for the three word group collections we study; the �rst verse of the Bible (G11,
Section 6), the genetic code (GC, Section 7) and Jesus Christ (JC, Section 8).

We start by considering a set of n words, labeled i = 1, . . . , n. It is assumed that a numeric
scheme is used to assign non-negative integers Y1, Y2, . . . , Yn to each of these words. For
G11 words have their usual meaning, with the �rst sentence of the Bible containing n = 7
words, and likewise JC contains the n = 2 words with labels 1=Jesus and 2=Christ. The
numerical values of these words rely on Hebrew gematria and Greek isopsephy schemes
respectively, as explained in Sections 5, 6, and 8.

The de�nition of words, and the assignment of numbers to these words, is a bit more
complicated for GC. This word group has n = 21 words, and in line with Appendix E of
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Table 1: Symbols and abbreviations used in the appendix. They are sorted into the
four categories general, words, word groups (WGs), and word group collections (WGCs),
separated by horisontal lines.

General Meaning
m Positive integer larger than 1 (typically a prime number).
π Probability (= 1/m) that a randomly chosen number is divisible by m.
π′ Probability (= 1/(m−1)) that a randomly chosen number not divisible bym, has a prescribed

remainder modulo m.
Words Meaning
n Number of words.
i Word, identi�ed by its order number (∈ {1, . . . , n}) among all words.
Yi Numerical value of word i.
Y Column vector (Y1, . . . , Yn)T of length n with the numerical values of all words.
Xi Numerical value of word i modulo m.
X Column vector (X1, . . . , Xn)T of length n with the numerical values modulo m of all words.
Rn Number of words, among n words, whose numerical values are divisible by m.
Qn Number of words, among n words, whose numerical values are not divisible by m (= n−Rn).
q Observed value of Qn, the nr. of words among n, with numerical values not divisible by m.
H0 Null hypothesis that the numerical values of all words have a remainder modulo m that is

uniformly distributed on 0, 1, . . . ,m− 1.
H1 Alternative hypothesis that word groups are divisible by m more often than expected under

H0.
H′

0 Modi�ed null hypothesis that no words are divisible by m, with numerical values modulo m
that are uniformly distributed on 1, . . . ,m− 1.

WGs Meaning
I, J A word group, possibly with multiple occurrences of words, like {1, 1, 2, 3}. If at most one

copy of each word occurs in this word group, then I (or J) is a subset of {1, . . . , n}.
YI Total numerical value of all the words in word group I.
XI Total numerical value of all the words in word group I modulo m.
KI Divisibility indicator that equals 1 if the total numerical value of the words in word group I

is divisible by m, and otherwise it equals 0.
WGCs Meaning
I,J A word group collection, i.e. a set word groups. It is assumed that I is a smaller word group

collection than J , so that I is a subset of J .
Y J Column vector (YI ; I ∈ J )T of length |J | with the numerical values of all word groups.
XJ Column vector (XI ; I ∈ J )T of length |J | with the numerical values modulo m of all word

groups.
AJ A matrix (aji) of dimension |J | × n that summarizes J , with aji the number of times word

i occurs in word group j.
rJ Rank of matrix AJ , i.e. the number of linearly independent word groups of J .
Nnsr Number of word group collections I ⊂ Jall constructed from n words such that I has s word

groups, and rI = r.
KI Divisibility indicator that equals 1 if all word groups I in I are such that the total numerical

values of the words in I are divisible by m.
Jall When word groups contain at most one copy of each word, this is the word group collection

that consists of all word groups, i.e. all 2n − 1 non-empty subsets of {1, . . . , n}.
G11 A word group collection corresponding to Genesis 1:1 (= Jall, with n = 7).
GC A word group collection corresponding to the genetic code (n = 14 linearly independent word

groups).
JC A word group collection corresponding to Jesus Christ (= Jall, with n = 2).
SJ Divisibility count, i.e. the number of the word groups in J whose total numerical values are

divisible by m.
sJ Observed value of SJ .
pJ The p-value of J , i.e. the probability that the divisibility count SJ by chance (H0) is at least

as large as the observed value sJ .
tJ The t-statistic of J , i.e. the number of standard deviations the observed divisibility count

sJ is from the mean, under the null hypothesis of chance (H0).
Sn Short-hand notation for the divisibility count SJall

of all word groups among n words, when
at most one copy of each word is allowed in the word groups.

Tn Number of word groups in J whose total numerical values are divisible by m, among those
that are formed by the Qn words (out of n) that have a numerical value not divisible by m.

v Observed speci�city of the combined divisibility pattern of all three word group collections
G11, GC, and JC.

pcomb Combined p-value for the word group collections G11, GC, and JC.

padjcomb Combined p-value for the word group collections G11, GC, and JC, adjusted for multiple
testing.
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Shcherbak and Makukov (2013), the �rst 20 of these words correspond to amino acids,
each of which is assigned a nucleon number for its side chain, whereas the last word is the
standard block (SB), with a numerical value that corresponds to its nucleon number.

A word group I is a set of words. Assume �rst that I contains at most one copy of each
word, so that I is represented by a subset of {1, . . . , n}. The total numerical value

YI =
∑
i∈I

Yi (A.1)

of word group I is obtained by adding the numerical values Yi of all its words i. Let J
be a word group collection, that is, a set of subsets I of {1, . . . , n}. The number |J | of
word groups in J ranges between 1 (one single word group) and 2n− 1 (all possible word
groups; J = Jall). If all word groups of J contain at most one copy of each word, then J
is represented by a binary matrix A = AJ = (aji) of dimension |J |×n, where aji equals
1 or 0 depending on whether word i is present in word group j or not. In particular, if Ij
is word group number j of J , it is possible to rewrite (A.1) (with I = Ij) as

YIj =
n∑
i=1

ajiYi. (A.2)

G11 and JC are word group collections such that each word group contains at most one
copy of each word. Whereas G11 contains all |J | = |Jall| = 27 − 1 possible word groups
formed by the words of Genesis 1:1, JC contains all |J | = |Jall| = 22− 1 = 3 word groups
formed by the two words �Jesus� and �Christ�.

A more general de�nition of word group collection allows for multiple copies of words
within word groups, corresponding to a non-binary matrix AJ , where aji refers to the
number of copies of word i in word group j. GC is of this kind, with 13 word groups
de�ned from the 13 divisibility patterns of 37 described in Figure 9 of Section 7.

Tables 3-5 contain some summary statistics for the word group collections G11, JC, and
GC. Notice in particular that G11, JC, GC have 0, 0, 10 word groups with multiple
occurrences of words, respectively. The last three columns of these tables display, for
each word group I ∈ J , its numerical value YI , the value

XI = YI mod m, (A.3)

and a binary divisibility indicator KI that equals 1 if YI is divisible by m, and 0 otherwise.
Evidently, KI equals 1 if and only if XI = 0.

Our object of study is the divisibility count SJ . This is the number of word groups in J
whose numerical values are divisible by m. It follows that the divisibility count

SJ =
∑
I∈J

KI (A.4)

is the sum of the divisibility indicators for all word groups within J . In order to analyze
SJ we need to express the observed divisibility pattern of J in a convenient way. We will
make use of the matrix A and phrase the divisibility pattern of J as a system of linear
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Table 2: Illustration of three WGCs J = {I1, . . . , I|J |}; G11 from Section 6, GC from
Section 7 and JC from Section 8. For G11 and JC each word group is represented by a
subset of {1, . . . , n}, whereas all word groups of GC are represented by the corresponding
rows of A, counting the number of occurrences of each word (only the �rst three and last
two word count numbers are shown). The words of each WGC are listed in the same
order as the columns of Tables 3-5. In addition, the 13 word groups P1, . . . ,P13 of GC
are listed in the same order as in Figure 9, with SB = Standard block (also word nr. 21),
ANSC = All non-stop codons, and NC = Non-redundant codons of the contracted code.
For P3, P4, P5, P6, P11, and P12 each WG corresponds to the blue or green subpatterns
of Figures 6 and 7.

Word group Words, with labels and numbers Word groups in J
collection J n i Word Yi |J | j Ij

Genesis 1:1 7 1 In the beginning 913 127 1 {1}
(G11) 2 created 203 2 {2}

3 God 86 3 {1, 2}
4 ∗ 401 4 {3}
5 the heaven 395 5 {1, 3}
6 and 407 . . .
7 the earth 296 127 {1, 2, 3, 4, 5, 6, 7}

Genetic code 21 1 Ala 15 13 1 P1 = SB = {0, 0, 0, . . . , 0, 1}
(GC) 2 Arg 100 2 P2 = ANSC = {4, 6, 2, . . . , 4, 0}

3 Asn 58 3 P3 = blue = {2, 4, 2, . . . , 2, 0}
4 Asp 59 4 P4 = green ={1, 1, 0, . . . , 1, 0}
5 Cys 47 5 P5 = green = {1, 1, 2, . . . , 1, 0}
6 Glu 73 6 P6 = green = {2, 0, 0, . . . , 0, 0}
7 Gln 72 7 P7 = {0, 0, 2, . . . , 0, 0}
8 Gly 1 8 P8 = {0, 2, 0, . . . , 0, 0}
9 His 81 9 P9 = {1, 1, 0, . . . , 0, 0}
. . . 10 P10 = NC = {1, 2, 1, . . . , 1, 0}
19 Tyr 107 11 P11 = green = {1, 1, 0, . . . , 1, 0}
20 Val 43 12 P12 = green = {0, 1, 0, . . . , 0, 0}
21 SB 74 13 P13 = {1, 1, 1, . . . , 1, 0}

Jesus Christ 2 1 Jesus 888 3 1 {1}
(JC) 2 Christ 1480 2 {2}

3 {1, 2}

26



Diophantine equations. More speci�cally, let Y = (Y1, . . . , Yn)
T and Y J = (YI ; I ∈ J )T

refer to the column vectors of numerical values, of all words and of all word groups in J
respectively, with T a symbol for matrix transposition. Then we have that

Y J = AY . (A.5)

In order to analyze the divisibility count in (A.4), it is helpful the express (A.5) modulo
m. To this end, if I = {i} consists of one single word we let Xi = XI be the remainder
(A.3) when the numerical value Yi of this word is divided by m. Let X = (X1, . . . , Xn)

T

and XJ = (XI ; I ∈ J )T be the column vectors of numerical values modulo m, for all
words and all word groups in J respectively. Then

XJ = AX mod m, (A.6)

if the modulo m operation is taken componentwise for all word groups in J . In particular,
if Ij is the j:th word group of J , it follows from (A.6) that

XIj = (AX)Ij mod m =
n∑
i=1

ajiXi mod m. (A.7)

Although all Xi ∈ {0, 1, . . . ,m − 1} in (A.7), the modulo m operation in this equation
(and in (A.6)) is still necessary, since it may nevertheless happen that the sum in (A.7)
does not belong to {0, 1, . . . ,m− 1}. It follows from (A.4) and (A.6) that the divisbility
count SJ is a function of XJ only. Because of the modulo operation in (A.6) we may
therefore without loss of generality assume that

aji ∈ {0, 1, . . . ,m− 1} for all j ∈ J , i = 1, . . . , n. (A.8)

A.2 Statistical model

A.2.1 p-values

Our objective is to �nd out, for each word group collection J , whether the observed
value sJ of the divisibility count SJ , is larger than we would expect if the numerical
values of all word groups are formed by chance. This is a statistical hypothesis testing
problem, where the null hypothesis (H0), that the numerical values of all word groups are
completely random, is tested against the alternative hypothesis (H1) that word groups
have numerical values divisible by m, more often than we would expect by chance. In
mathematical terms our goal is to compute a p-value

pJ = P (SJ ≥ sJ |H0), (A.9)

that is, to �nd the probability that a randomly formed divisibility count is at least as
large as the observed value sJ . In order to specify the null hypothesis more rigorously,
recall that Xi is the remainder when dividing the numerical value Yi of the word with
label i, by m. The null hypothesis is de�ned in terms these remainders; that they are
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Table 3: Word group statistics for J = G11 = {I1, I2, . . . , I127}. All word groups
are listed in lexicographical order, reading digits from left to right. Word group Ij
corresponds to all 1 entries of row j of the 127 × 7 binary matrix A = (aji). For each
word group Ij, its numerical value YIj is shown as well as its modulo m(= 37) value XIj .
The variable KIj equals 1 (0) if YIj is (is not) divisible by m, and the total word count
sJ of the bottom row is the sum of all KIj .

Word label i
j 1 2 3 4 5 6 7 YIj XIj KIj

1 1 0 0 0 0 0 0 913 25 0
2 0 1 0 0 0 0 0 203 18 0
3 1 1 0 0 0 0 0 1116 6 0
4 0 0 1 0 0 0 0 86 12 0
5 1 0 1 0 0 0 0 999 0 1
6 0 1 1 0 0 0 0 289 30 0
7 1 1 1 0 0 0 0 1202 18 0
8 0 0 0 1 0 0 0 401 31 0
9 1 0 0 1 0 0 0 1314 19 0
10 0 1 0 1 0 0 0 604 12 0
...

...
...

...
...

...
...

...
...

...
...

126 0 1 1 1 1 1 1 1788 12 0
127 1 1 1 1 1 1 1 2701 0 1
Sum sJ = 23

Table 4: Word group statistics for J = JC = {I1, I2, I3}. Word group Ij corresponds to
all 1 entries of row j of the 3 × 2 binary matrix A = (aji). For each word group Ij, its
numerical value YIj is shown as well as its modulo m(= 37) value XIj . The variable KIj

equals 1 (0) if YIj is (is not) divisible by m, and the total word count sJ of the bottom
row is the sum of all KIj .

i
j 1 2 YIj XIj KIj

1 1 0 888 0 1
2 0 1 1480 0 1
3 1 1 2368 0 1

Sum sJ = 3
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Table 5: Representation of word group collection J = GC = {I1, I2, . . . , I13}, with some
of its word groups having multiple occurrences of words. The construction is based
on n = 21 words, labeled i = 1, . . . , 20 for amino acids (ordered as in Figure 5), and
i = 21 for the standard block (SB). The �rst 20 word numbers Y1, . . . , Y20 represent
number of nucleons of the side chains of amino acids, whereas Y21 is the nucleon number
of SB. The 13 word groups are listed in the same order as in Figure 9, where word
group Ij corresponds to pattern Pj of that table. Word group Ij is represented by row
j of the 13 × 21 matrix A = (aji), where aji is the number of occurrences of word i
in word group Ij. For each word group Ij, the three rightmost columns of the table
display YIj , its modulo m(= 37) value XIj , and KIj , which equals 1 (0) if YIj is (is
not) divisible bym. The total word count sJ = 13 of the bottom row is the sum of all KIj .

Word
A A A A C G G G H I L L M P P S T T T V

Word l r s s y l l l i l e y e h r e h r y a S
group a g n p s u n y s e u s t e o r r p r l B
nr Word label i

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2
j 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 YIj

XIj
KIj

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 74 0 1
2 4 6 2 2 2 2 2 4 2 3 6 2 1 2 4 6 4 1 2 4 0 3404 0 1
3 2 4 2 0 1 2 1 3 1 2 4 1 0 1 3 2 2 1 1 2 0 1998 0 1
4 1 1 0 0 1 0 0 0 1 1 4 0 0 1 3 2 1 0 1 1 0 999 0 1
5 1 1 2 0 0 0 1 2 0 1 2 0 0 1 1 2 1 1 0 1 0 888 0 1
6 2 0 0 1 1 0 1 0 1 1 1 1 1 1 0 2 0 0 0 0 0 703 0 1
7 0 0 2 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 333 0 1
8 0 2 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 1 0 0 0 333 0 1
9 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 333 0 1
10 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 0 1443 0 1
11 1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 0 0 1 0 333 0 1
12 0 1 0 0 1 0 1 0 1 0 2 0 0 1 1 1 0 1 1 0 0 814 0 1
13 1 1 1 1 3 0 0 1 1 4 9 0 1 5 1 6 1 1 3 5 0 2664 0 1

Sum sJ = 13
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formed independently, and that each one of them has a uniform distribution, that is, all
values {0, 1, . . . ,m− 1} of Xi are equally likely. More formally, we write this as

H0 : X1, X2, . . . , Xn are independent random variables with a uniform distribu-
tion on {0, 1, . . . ,m− 1}, i.e. P (Xi = x) = 1/m, x = 0, 1, . . . ,m− 1.

(A.10)

Other choices of null hypothesis are discussed in Section A.7.

A.2.2 Mean and variance of the word divisibility count

Before �nding ways of approximating the p-value (A.9), we will �rst compare the observed
divisibility count sJ with the expected value and standard deviation of a randomly formed
divisibility count. In order to simplify formulas it is convenient to introduce the probability
π = 1/m. It follows from (A.6)-(A.7) that the divisibility indicators KI satisfy

P (XI = 0|H0) = E(KI |H0) = π,
Var(KI |H0) = π(1− π),

Cov(KI , KJ |H0) = 0, I 6= J,
(A.11)

where E(·), Var(·), and Cov(·) refer to expected values, variance, and covariance of random
variable(s). In particular, if (A.11) is inserted into the de�nition of the divisibility count
SJ in (A.4), we �nd that

E(SJ |H0) =
∑

I∈J E(KI |H0) = |J |π,
Var(SJ |H0) =

∑
I∈J Var(KI |H0) = |J |π(1− π).

(A.12)

The ratio

tJ =
sJ − E(SJ |H0)√

Var(SJ |H0)
=

sJ − |J |π√
|J |π(1− π)

(A.13)

quanti�es how many standard deviations away from the mean the observed word group di-
visibility count sJ is. Table 6 displays the values of tJ for the three word group collections
of Table 2. Since all these WGCs have large t-values, this indicates that the correspond-
ing p-values are small as well. Notice that tJ is standardized, so that E(tJ |H0) = 0 and
Var(tJ |H0) = 1 when sJ is randomly drawn from H0.

Table 6: Values of the t-statistic (A.13) for the three word group collections of Table 2
when m = 37. The rightmost column displays the rank rJ of the matrix AJ , for each
word group collection.

J |J | sJ E(SJ |H0) Var(SJ |H0)
1/2 tJ rJ

G11 127 23 3.432 1.828 10.707 7
GC 13 13 0.351 0.585 21.633 13
JC 3 3 0.081 0.281 10.392 2
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A.3 Finding p-values for word group collections with independent
word groups (as for GC)

Although tJ in (A.13) gives some information about how likely it is to observe sJ by
chance, this information is not su�cient to compute the p-value in (A.9). In order to
evaluate the p-value we need to �nd or approximate the distribution of the divisibility
count SJ under the null hypothesis H0 of chance. This is the topic of Sections A.3-A.4.
In Section A.3 we will �rst develop some theory that makes it possible to compute the
p-value of the word group collection GC, where all word group counts are independent.
It is more di�cult to �nd the p-values for the other two WGCs G11 and JC, the topic of
Section A.4. The reason is that these two WGCs contain so many word groups that the
divisbility indicators KI in (A.4) are no longer independent. For instance, if two words
are divisible by 37, then the word group formed by these two words is divisible by 37 as
well.

As a preparation for �nding the p-value (A.9), we introduce for any word group collection
J the rank rJ = rank(AJ ) of the matrix AJ , that is, the number of linearly independent
rows of this matrix. We have that

1 ≤ rJ ≤ min(|J |, n). (A.14)

From the rightmost column of Table 6 we notice that word group collection GC has
linearly independent rows, i.e.

rJ = |J |. (A.15)

Whenever (A.15) holds and m is a prime number, it follows that the word group numbers
of J satisfy

{XIj}
|J |
j=1 are independent under H0 with uniform distributions P (XIj = x) = π,

(A.16)
for x = 0, 1, . . . ,m − 1. We will motivate (A.16) below, but �rst explain how it can be
used to evaluate the p-value of a WGC J that satis�es (A.15). Four our purposes, the
important implication of (A.16) is that the divisibility indicators

{KIj}
|J |
j=1are independent random variables under H0 with E(KIj) = π, (A.17)

that is, P (KIj = 1) = π and P (KIj = 0) = 1−π. (Notice that this is a stronger assertion
than (A.11), which only requires that KIj are uncorrelated random variables under H0,
with expected value π.) Recall from (A.4) that SJ is the sum of the divisibility indicators
KIj . From this and (A.17) it follows that

SJ |H0 ∼ Bin(|J |, π)

has a binomial distribution with parameters |J | and π under the null hypothesis whenever
(A.15) holds and m is a prime number. The corresponding p-value (A.9) is the tail
probability

pJ =

|J |∑
s=sJ

(
|J |
s

)
(1− π)sπs (A.18)
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of this binomial distribution at the observed divisibility count sJ . Applying formula
(A.18), with m = 37, to the WGC J = GC (sJ = |J | = 13) we �nd that

pGC = π13 =

(
1

37

)13

= 4.1056 · 10−21. (A.19)

For other values of m, not all word groups of GC will be divisible by m (sJ < |J |).
It follows that pGC will involve more terms in (A.18) when m 6= 37 and hence be a
lot larger than the value for m = 37 in (A.19). Unfortunately, formula (A.18) severely
underestimates the p-value for WGCs J = JC and J = G11. The reason is that (A.15)
fails, and therefore JC and G11 contain too many word groups for {KI ; I ∈ J } to be
independent.

Let us now return to (A.16) and prove this claim. The details are a bit involved, and a
reader who prefers to skip the proof of (A.16) may proceed to Section A.4. In view of
(A.6), (A.16) is equivalent to

P (AX = x mod m|H0) = π|J |, (A.20)

for any vector x = (x1, . . . , x|J |)
T of integers. It is therefore su�cient to prove (A.20),

whenever (A.15) holds and m is a prime number. The proof of (A.20) is based on the fact
that since m is a prime number, the set of elements {0, 1, . . . ,m− 1} forms a �eld under
the two operations multiplication and addition modulo m. It is therefore possible to �nd
an invertible matrix C of dimension |J | × |J |, whose entries are natural numbers, such
that

CA = B mod m, (A.21)

where the equality is modulo m for all |J |n matrix elements on both sides of (A.21), and
the entries bji of the |J | × n upper triangular matrix B satisfy

bji =

{
0, 1 ≤ i < ij,
1, i = ij

for some increasing sequence 1 ≤ i1 < i2 < . . . < i|J | ≤ n of |J | word indeces. Multiplying
both sides of the equality sign of (A.20) by C, it follows that (A.20) is equivalent to

P (BX = z mod m|H0) = π|J |, (A.22)

with z = Cx = (z1, . . . , z|J |)
T . In order to prove (A.22), we rewrite its left hand side as

an integral

P (BX = z mod m|H0)
= E

[
P
(
Xi1 = −z1 −

∑n
i=i1+1 b1iXi mod m|Xi1+1, . . . , Xn, H0

)
·P
(
Xi2 = −z2 −

∑n
i=i2+1 b1iXi mod m|Xi2+1, . . . , Xn, H0

)
...

·P
(
Xi|J | = −zi|J | −

∑n
i=i|J |+1 b|J |iXi mod m|Xi|J |+1, . . . , Xn, H0

)] (A.23)

that involves |J | nested conditional probabilities, and an outer expectation that is taken
with respect to Xi1+1, . . . , Xn. Recall from (A.10) that {Xi}ni=1 are independent random
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variables under H0, with a uniform distribution on 0, 1, . . . ,m − 1. From this it follows
that all conditional probabilities in (A.23) equal π regardless of the values of the random
variables to the right of the vertical bars that they are conditioned on. Consequently,
since (A.23) is the expected value of the product of |J | such conditional expectations, it
simpli�es to π|J |, and (A.22) is veri�ed.

A.4 Finding p-values for word group collection when word groups
are not independent (as for JC and G11)

In this subsection we will �rst in Section A.4.1 �nd an upper bound of the p-value of
the divisbility count of any word group collection. This is of independent interest, but it
will also be used in Section A.6, in connection with multiple testing. In Section A.4.2 we
obtain an exact formula for the divisibility count when J = Jall contains all |J | = 2n− 1
word groups, with the restriction that multiple occurrences of words are not allowed.
Then in Sections A.4.3 and A.4.4, this formula is applied to the p-values of J = JC and
J = G11 respectively.

A.4.1 A general formula for p-values of word group collections

In order to derive the general upper upper bound of the p-value, we rewrite (A.9) as

pJ = P (∪I1,...,Is{KI1 = . . . = KIs = 1}|H0)
≤

∑
I1,...,Is

P (KI1 = . . . = KIs = 1|H0)

=
∑

I1,...,Is
E(KI1 · . . . ·KIs|H0)

=
∑
I E(KI |H0),

(A.24)

where s = sJ and the sum is taken over all
(|J |
s

)
word group collections I = {I1, . . . , Is}

with s word groups that belong to J . In the �rst step of (A.24) we used the fact that
the event {SJ ≥ s} is equivalent to the union of the events {KI1 = . . . = KIs = 1} for all
such word group collections.

The upper bound of the p-value in (A.24) is typically too crude if J = Jall consists of all
2n − 1 word groups without multiple occurrences of words (as for J = G11). However,
(A.24) is accurate when J is small enough so that |J | only slightly exceeds rJ (cf. (A.15)).

Recall from Section A.1 that J is represented by a |J | × n matrix AJ , whose entries are
natural numbers. Analogously, any WGC I ⊂ J is equivalent to a submatrix AI of AJ
of dimension |I| × n, obtained by extracting all rows in I from AJ . The requirement
KI = 1 in (A.24), for each WGC I with s word groups, corresponds to having

AIX = 0 modulo m.

If m is a prime number, the expected value of KI is

E(KI |H0) = πrI (A.25)
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under the null hypothesis, where rI = rank(AI) is the number of independent restrictions
that the rows of AI impose. Formula (A.25) is shown in the same way as (A.20) when
x = 0 (which corresponds to the special case I = J and rJ = |J |). Inserting (A.25) into
(A.24), it follows that

pJ ≤
s∑
r=1

Nnsrπ
r, (A.26)

where Nnsr is the number of WGCs I in (A.24) that have s word groups (constructed
from n words) that belong to J , and additionally satisfy rI = r.

Recall that two of the WGCs (J = GC and J = JC) of Table 2 have s = |J |. Then
there is only one single term I = J of (A.24), so that this upper bound of pJ is exact.
This corresponds to NnsrJ = 1, and Nnsr = 0 for all r 6= rJ in (A.26), and consequently

pJ = πrJ . (A.27)

In particular, when rJ = |J | = sJ (as for GC), formula (A.27) agrees with (A.19).

A.4.2 p-values of word group collections with all word groups

It is assumed in this subsection that all word groups have at most one occurrence of each
word. We will derive an exact formula for the p-value (A.9) of the word group collection
J = Jall that consists of all such word groups, i.e. |J | = 2n − 1. This includes J = JC
and J = G11 as special cases n = 2 and n = 7 respectively. For ease of notation we
denote the divisibility count by SJ = Sn whenever J = Jall consists of all word groups
obtained from n words.

Let Rn be the number of words among the n given ones, that have a numerical value
Yi divisible by m. Let also Tn be the number of word groups divisible by m which are
formed by the remaining Qn = n − Rn words. For instance, Tn = 0 when Qn = 0, and
more generally

Sn = 2Rn − 1 + (2Rn − 1)Tn + Tn = 2n−Qn(Tn + 1)− 1, (A.28)

where the �rst term 2Rn − 1 is the number of word groups formed by the words whose
numerical values are divisible by m, the second term (2Rn − 1)Tn is the number of word
groups with numerical values divisible by m that contain at least one word divisible by
m and at least one word not divisible by m, and the third term Tn is de�ned as above.
In order to �nd the null hypothesis distribution of Sn we will condition on the value of
Qn. This enables us to express the p-value in (A.9) as

pJall = P (Sn ≥ s|H0)
=

∑n
q=0 P (Qn = q|H0)P (Sn ≥ s|Qn = q,H0)

=
∑n

q=0 P (Qn = q|H0)P (2
n−q(Tn + 1)− 1 ≥ s|Qn = q,H0)

=
∑n

q=0 P (Qn = q|H0)P (Tn ≥ d2−(n−q)(s+ 1)− 1)e|Qn = q,H0),

(A.29)

where d·e refers to the smallest integer greater or equal to the number in brackets. We
thus need to know the joint distribution of Qn and Tn under the null hypothesis H0 in
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order to simplify (A.29). It follows from (A.10) that Qn has a binomial distribution

Qn|H0 ∼ Bin(n, 1− π) =⇒ P (Qn = q|H0) =

(
n

q

)
πn−q(1− π)q (A.30)

under the null hypothesis. Since none of the Qn words have a numerical value divisible
by m, if H0 holds and Qn = q, the joint distribution of these q words corresponds to the
adjusted null hypothesis

H ′0 : {Xi}i;Xi 6=0 independent with P (Xi = x) =
1

m− 1
=: π′, x = 1, 2, . . . ,m− 1.

(A.31)
In words, formula (A.31) tells that if H0 holds, those q words whose numerical values Yi
are not divisible by m, have remainders modulo m that are independent and uniformly
distributed on {1, . . . ,m− 1}. From this it follows that the distribution of Tn under the
null hypothesis H0 is the same as the distribution of Sq under the adjusted null hypothesis
H ′0, when Qn = q. We therefore condition on the valule of Qn = q, make use of (A.30)
and rewrite (A.29) as

pJall = P (Sn ≥ s|H0)
=

∑n
q=0

(
n
q

)
πn−q(1− π)qP (Sq ≥ d2q−n(s+ 1)− 1)e|H ′0)

= πn +
∑n

q=1

(
n
n−q

)
πn−q(1− π)qP (Sq ≥ d2q−n(s+ 1)− 1)e|H ′0) ,

(A.32)

a formula also derived by van der Valk (2015) for n = 7 and m = 37.

A.4.3 p-value of JC

In this section we will apply the theory of Section A.4.2 in order to approximate the
p-value of JC. To this end we apply formula (A.32) with n = 2, s = 3, m = 37, and
π = 1/37, and �nd that

pJC = P (S2 ≥ 3|H0)
= (1/37)2

+ 2(1− 1/37)(1/37)P (S1 ≥ 1|H ′0)
+ (1− 1/37)2P (S2 ≥ 3|H ′0)
= (1/37)2

= 7.3046 · 10−4,

(A.33)

where in the third step we used that P (S1 ≥ 1|H ′0) = P (S2 ≥ 3|H ′0) = 0. Note that
(A.33) agrees with (A.27), since rJC = 2. This is not surprising, since JC satis�es the
necessary condition s = |J |(= 3) for (A.27) to hold.
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A.4.4 p-value of G11

In order to �nd the p-value of G11, we will once again apply formula (A.32), but this time
with n = 7, s = 23, and m = 37. This yields

pG11 = P (S7 ≥ 23|H0)
= (1/37)7

+ 7(1− 1/37)(1/37)6

+ 21(1− 1/37)2(1/37)5

+ 35(1− 1/37)3(1/37)4 · P (S3 ≥ 1|H ′0)
+ 35(1− 1/37)4(1/37)3 · P (S4 ≥ 2|H ′0)
+ 21(1− 1/37)5(1/37)2 · P (S5 ≥ 5|H ′0)
+ 7(1− 1/37)6(1/37) · P (S6 ≥ 11|H ′0)
+ (1− 1/37)7 · P (S7 ≥ 23|H ′0).

(A.34)

In order to evaluate pG11, we thus need to compute all terms P (Sq ≥ k|H ′0) that appear in
(A.34). Following van der Valk (2015), it is possible to give exact values of these quantities
by letting a computer go through all (m−1)q = 36q possible in vectorsXq = (X1, . . . , Xq)

T

with nonzero elements, which under H ′0 have the same probability 1/(m − 1)q = 1/36q.
van der Valk also noted that in order to �nd the number of these vectors Xq for which the
corresponding divisibility count satis�es Sq ≥ k, it is possible to �rst assume X1 = 1, and
calculate the number of sequences (1, X2, . . . , Xq)

T for which Sq ≥ k, and then multiply
this number by m− 1 = 36. Based on this it follows that

P (S3 ≥ 1|H ′0) = 5040/363 = 0.1080,
P (S4 ≥ 2|H ′0) = 40140/364 = 0.02390,
P (S5 ≥ 5|H ′0) = 92340/365 = 0.001527,
P (S6 ≥ 11|H ′0) = 74880/366 = 3.4399 · 10−5,
P (S7 ≥ 23|H ′0) = 46368/367 = 5.9170 · 10−7,

(A.35)

where the �rst three equations appear in van der Valk (2015), whereas we derived the last
two. Inserting (A.35) into (A.34) we �nd that

pG11 = (1/37)7

+ 7(1− 1/37)(1/37)6

+ 21(1− 1/37)2(1/37)5

+ 35(1− 1/37)3(1/37)4 · 0.1080
+ 35(1− 1/37)4(1/37)3 · 0.02390
+ 21(1− 1/37)5(1/37)2 · 0.001527
+ 7(1− 1/37)6(1/37)1 · 3.4399 · 10−5
+ (1− 1/37)7 · 5.9170 · 10−7
= 4.3383 · 10−5

(A.36)

is the p-value for word group collection G11.

A.5 Combined p-values

In this section we combine information from the divisibility patterns of the �rst verse of
the Bible (G11), the genetic code (GC), and Jesus Christ (JC). It is reasonable to believe
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that the �rst verse of the Bible, the genetic code and Jesus Christ are independent sources
of evidence under the null hypothesis H0 that all three texts are formed by chance. If H0

is true, then pG11, pGC, and pJC are observations of independent random variables PG11,
PGC, and PJC. It is possible to regard these three word group collections as one single
meta analysis and combine the three p-values into one combined p-value. This can be
done in many di�erent ways. We will employ Fisher's method (Fisher, 1925, Mosteller
and Fisher, 1948) with a combined p-value1

pcomb = P (V ≥ v|H0), (A.37)

where
V = − log(PG11)− log(PGC)− log(PJC)

is a random variable that combines information from all three word group collections, and

v = − log(pG11)− log(pGC)− log(pJC)
= − log(4.3383 · 10−5)− log(4.1056 · 10−21)− log(7.3046 · 10−4)
= 64.2092

(A.38)

is the observed value of V . The last step of (A.38) follows from (A.19), (A.33), and (A.36).

It is possible to interpret v as a measure of how surprised we are to observe the three
p-values pG11, pGC, and pJC for the divisibility patterns of Genesis 1:1, the genetic code
and the words �Jesus� �Christ�. This measure of surprisedness is quanti�ed in units of
nats of information, and it is closely related to the so called functional information used
to quantify rareness of functional proteins (Szostak, 2003, Hazen et al., 2007).

Thorvaldsen and Hössjer (2020) argue that the smallness of (A.37) is a general way of
inferring �ne-tuning of biological and other systems. Once a null hypothesis of chance
and a measure of speci�city has been de�ned, the p-value of the system is the probability
that a randomly generated structure has a speci�city V at least as large as the observed
one v. Here, v is the speci�city that the divisibility patterns of Genesis 1:1, the genetic
code and �Jesus� �Christ� convey. In this context, the combined p-value (A.37) is the
probability that the speci�city V of a randomly generated divisibility pattern is at least
as large as the observed speci�city v.

In order to evaluate the combined p-value (A.37), we will approximate the distribution of
V under the null hypothesis H0. We will assume that PG11, PGC, and PJC have uniform
null distributions on the interval (0, 1). This would be true if the three divisibility counts
SG11, SGC, and SJC had continuous distributions under H0. However, since the number
of possible values of these divisibility counts is �nite, the uniformity assumption is only
an approximation. It is still conservative though, since it leads to an estimate of the
combined p-value that is too large. Given this assumption, that the three p-values are

1Fisher's method, with c combined tests, is usually stated in terms of a test statistic 2V that has a
chisquare distribution χ2

2c with 2c degrees of freedom under the null hypothesis H0. However, this is
equivalent to V having a gamma distribution with shape parameter c and scale parameter 1 under H0.
We apply Fisher's method with c = 3 combined tests.
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independent with uniform distributions, V will have a gamma distribution with shape
parameter 3 and scale parameter 1. From this and (A.37) it follows that

pcomb ≤ e−v(1 + v + v2/2)
= 2.7668 · 10−25, (A.39)

where the �rst inequality follows from the uniform distribution approximation of PG11,
PGC, and PJC, and the equality of the second step is a consequence of (A.38). In the next
section we describe how to adjust (A.39) for multiple testing.

A.6 Adjusting for multiple testing

In the previous section we found that the combined p-value for observing the divisibility
patterns of G11, GC, and JC is very low. The question arises whether (A.39) is too
small and should be corrected for other possible divisibility patterns. Such a correction
would safeguard against observational bias, where one �rst notices a pattern and then
tests a hypothesis that only includes this pattern. Instead, one should rather perform
multiple comparisons or multiple tests, of other potential and similar types of patterns.
Several methods of multiple testing have been developed, see for instance Ge et al. (2003)
for a review. The Bonferroni correction (Bonferroni, 1936, Miller, 1966) is the simplest
and most well known multiple test adjustment. Its purpose is to control the so called
familywise error rate by multiplying the observed p-value with the number of tests. We
will use Bonferroni type corrections to adjust the individual p-values of G11, GC, and JC,
as well as the p-value of the combined test. In this context we introduce

NG11 = number of possible and relevant Bible verses in the Old Testament
× number of possible Hebrew gematria schemes,

NGC = number of biologically relevant and linearly independent word groups
from the genetic code,

NJC = number of namnes of the Lord,
Nm = number of relevant divisibility numbers m.

The adjusted individual p-values are de�ned as

padjG11 = min(NG11pG11, 1),

padjGC = min(
(
NGC
13

)
pGC, 1),

padjJC = min(NJCpJC, 1).

(A.40)

The �rst adjusted p-value of (A.40) is a Bonferroni correction. It corresponds to having
NG11 hypothetical data sets, one for each combined Bible verse and gematria scheme, with
padjG11 an upper bound for the probability, under H0, that at least one of these hypothetical
tests would have a p-value at least as small as the one observed for Genesis 1:1 and
the mispar hechraci numbering scheme. The third adjusted p-value of (A.40) is also a
Bonferroni correction, with a similar interpretation in terms of NJC hypothetical data sets
and tests, one for each possible name of our Lord. The second adjusted p-value of (A.40)
corresponds to enlarging the given data set from 13 to NGC linearly independent word
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Table 7: Combined p-values pcomb and padjcomb for the divisibility patterns of Genesis 1:1
(G11), the genetic code (GC) and Jesus Christ (JC), computed without (A.41) and with
(A.43) adjustment for Nm possible values of m respectively, for six di�erent multiple
testing scenarios. The non-adjusted p-values (pGC = 4.1056 · 10−21, pJC = 7.3046 · 10−4,
pG11 = 4.3383 · 10−5), de�ned in (A.19), (A.33), and (A.36), were used for each word
group collection. Scenario 1 does not correct for multiple testing, whereas Scenario 2,
with NGC = 25, corresponds to a minimal adjustment for multipel testing (the 25 word
groups P1-P13 and N1-N12 of the genetic code, as described in the text). The most
conservative scenario (Scenario 6) is illustrated in Figure 1.

Scenario NG11 NGC NJC Nm pcomb padjcomb

1 1 13 1 1 2.7668 · 10−25 2.7668 · 10−25
2 1 25 1 1 8.3746 · 10−19 8.3746 · 10−19
3 10 30 2 10 2.9652 · 10−16 2.9652 · 10−15
4 20 35 3 20 9.2265 · 10−15 1.8453 · 10−13
5 30 40 4 30 1.3016 · 10−13 3.9048 · 10−12
6 40 45 5 40 1.1577 · 10−12 4.6307 · 10−11

groups. If this does not enlarge the unadjusted divisibility count (SGC = 13), an upper
bound of the adjusted p-value after the �rst step, is obtained from (A.24) by multiplying
pG11 with

(
NGC
13

)
.

In the next step Fisher's method is used to combine the p-values in (A.40). This gives

pcomb = P (V ≥ ṽ|H0) = e−ṽ(1 + ṽ + ṽ2/2), (A.41)

where
ṽ = − log(padjG11)− log(padjGC)− log(padjJC ) (A.42)

is the observed speci�city. Note that equations (A.41)-(A.42), in contrast to (A.37)-
(A.38), make use of the adjusted (rather than the unadjusted) individual p-values for
computing the speci�city. As a �nal step of the p-value computation a new Bonferroni
correction

padjcomb = min (Nmpcomb, 1) (A.43)

is applied to the combined p-value in (A.41) in order to control for di�erent choices of
divisbility numbers m.

The adjusted combined p-value (A.43) is computed for several multiple testing scenarios
in Table 7. It can be seen that padjcomb remains very small for all of these scenarios. We
argue that Scenario 6, with the highest amount of multiple testing adjustment, is far
too conservative. Indeed, there is plenty of external information available that makes a
value of 5 for NJC, and a value of 40 for NG11 and Nm too large (cf. sections 9-10 for a
motivation).
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We also argue that the value NGC = 45 of Scenario 6 is too large. On one hand, patterns
P1-P13 of Figure 9 are word groups with a biological interpretation in terms of pre-
de�ned criteria. This includes standard blocks and side chains of amino acids, division of
nucleotides into purines A/G and pyrimidines T/C, the concept of synonymous codons,
and dublicate bases of codons. Interestingly, Gamow and Y�cas (1955) suggested P3,
with codons having duplicate bases, based on a hypothetical amino acid model before
the standard genetic code was cracked. On the other hand, with NGC = 45, it seems
challenging to �nd 32=45-13 additional and linearly independent word groups, with a
clear biological interpretation. We have found 12 such additional word groups, and since
none of them are divisible by 37 we refer to them as �non-hit� gropus N1-N12. These
non-hit groups N1-N12 are generated as alternatives to P1-P13 in the following way:

� P1 has no alternative.

� P2 has one alternative N1, where all amino acids' nucleon numbers are summed
(without accounting for multiplicity in terms of number of occurrences of each amino
acid in the genetic code).

� P3 has three alternatives N2-N4, corresponding to subsets of codons for which 1, 2
or 3 of the nucleotides are purines (the fourth case of no purines is redundant).

� P4 has no alternative.

� P5 has no alternative.

� P6 has one alternative N5, where P3=grey is divided into codons with three unique
letters (green) and three identical letters (grey) respectively. Then N5=green and
N5=grey give rise N6 and N7 respectively, based on whether the missing letter or
the triplet is a purine or not.

� P7 has one alternative N8, where TTx/xTT is extracted from P4=green (rather
than AAx/xAA from P4=grey).

� P8 has one alternative N9, where CCx/xCC is extracted from P4=green (rather
than GGx/xGG from P4=grey).

� P9 has one alternative N10, where Txx/Cxx is extracted from P5=green (rather
than Axx/Gxx from P5=grey).

� P10 has no alternative.

� P11 has no alternative.

� P12 has no alternative.

� P13 has two alternatives N11-N12, where C is separated from T/A/G and A from
T/C/G respectively (the pattern whereby G is separated from T/C/A is redundant).
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If these 12 word groups N1-N12 are added to the 13 word groups P1-P13 of GC, the total
number of word groups is NGC = 25 = 12 + 13. We acknowledge though that probably
some other biologically relevant non-hit groups are missed. Therefore, the value NGC = 25
of Scenario 2 represents the minimal amount of multiple testing adjustment for the genetic
code.

The adjustment for multiple testing can be done in many ways. There is always a balance
between using external information on one hand, and thereby decreasing the adjusted
p-value, and on the other hand correct for various factors that potentially could be varied
in order to increase padjcomb. In our view we used conservative adjustments in Scenarios 5-6.
Consequently, we argue that the probability that the divisibility patterns within the �rst
verse of the Bible, the genetic code, and Jesus Christ occurred by chance is well below
10−10, and hence points towards an Intelligent Designer.

A.7 Choice of null hypothesis

In this appendix we analyzed divisibility patterns of numerical values of word groups
from the �rst verse of the Hebrew Bible, amino acid subsets of the genetic code, and the
two words Jesus Christ. These word groups are very often divisible by 37, and we found
that the probability (the p-value) for this to happen by chance is very small, also with
adjustment for multiple testing. Our p-value computations rely on what we mean by the
statement that the divisbility patterns of 37 occur by chance, that is, the choice of null
hypothesis when testing divisibility patterns from the Bible, the genetic code and the
words Jesus Christ. In this section we will discuss the choice of null hypothesis in more
detail.

A.7.1 Violations of independence and uniformity for null hypothesis (A.10)

The p-values of this article are based on a statistical model (A.10) for the null hypothesis
that the numeric values of words are generated by chance. This model asserts that the
numerical values of Hebrew and Greek words, and the nucleon numbers of amino acids,
are independent between words and amino acids respectively. Moreover, when these
numbers are divided by 37, it is assumed that the remainders are uniformly distributed
on 0, 1, . . . , 36. The advantage of this approach is its analytical tractability and the fact
that the same type of null hypothesis is used for all three word group collections.

But equation (A.10) is still a simpli�cation: First, words of languages are not independent,
and neither are the nucleon numbers of amino acids, since the same letters/atoms appear
in several linguistic words/amino acids.

Second, the numerical values of Hebrew and Greek words, and the nucleon numbers of
amino acids, are sums of a �nite number of letters (gematria values of Hebrew/Greek
letters and nucleon counts of atoms respectively), with pre-speci�ed numbers. The uni-
formity assumption is therefore not exact, in particular not if we condition on the values
of the numbers assigned to letters. It is also well known that nucleon numbers of amino
acids are negatively correlated with their redundancy (Hasegawa and Miyata, 1980), so
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that amino acids with smaller nucleon numbers tend to appear more frequently in the
genetic code. This strengthens the conclusion that word numbers modulo 37 are not uni-
formly distributed on 0, 1, . . . , 36. Such departures from uniformity are well known and
related to Benford's law with extensions (Berger and Hill, 2020).

A.7.2 Permutation-based null hypotheses

The null hypothesis may be chosen in other ways than (A.10). One possibility is to keep
the n word counts Y1, . . . , Yn �xed, and to randomly vary the elements of the matrix
A = AJ for the word group collection J . In view of (A.5)-(A.6), although the word
counts modulo m in X are �xed, since A is random, it follows that the collection XJ
of word group counts modulo m is random as well. Recall from (A.4) that the divisbility
count SJ is a function of XJ , and therefore SJ is random as well.

In the context of the genetic code, one could for instance keep the redundancy pattern of
synonymous codons �xed, so that the 21 sets of synonymous codons (of total size 64) are
�xed, but allocate them randomly to 20 amino acids and 1 stop signal. For the genetic
code, this corresponds to �rst adding one word for the stop signal, so that n = 22 and
Y22 = 0. Then a 22d column for the stop signal is added to AJ , so that aj,22 contains
the number of stop signals in each word group Ij. Then those 21 of all 22 columns of
the 14 × 22 matrix A that correspond to amino acids or a stop signal are permuted
randomly. A similar approach was used by Shcherbak and Makukov (2013, Appendix B).
They considered all surjective mappings from 64 codons to 21 amino acids/stop signals
that correspond to codes with (1) similar redundancy as the canonical genetic code, (2)
a reduced e�ect of mutations/mistranslations, (3) a small departure from cytoplasmic
balance. However, the score SGC they assigned to the genetic code was not a divisibility
count. Rather it was based on the number of nucleon count balances, symmetries and
equal splits of the code.

A.7.3 Evolutionary null hypotheses

Another possibility is to view the genetic code as the outcome of a chemical evolutionary
model (Knight et al, 1999, Koonin and Novozhilov, 2009, 2017). In the appendix of
Makukov and Shcherbak (2018), genetic codes were generated randomly from a number
of di�erent evolutionary models (corresponding to di�erent null hypotheses), and for each
of these the p-value was de�ned as the fraction of generated codes whose scores SGC were
at least as large as the observed score sGC for the canonical genetic code. This score SGC
was not a divisibility count, as in (A.4), but rather a quanti�er of mirror symmetries and
nucleotide inversions. In Table A3 of Makukov and Shcherbak (2018), this resulted in
p-values between 10−6 and 10−5. It is also possible to de�ne the score function SGC in yet
other ways. It is well known that the standard genetic code is very robust towards point
mutations of single nucleotides, its redundancy pattern has a biological interpretation
(Ronneberg et al., 2000), and it carries a cytoplasmic balance. If these and a number
of other pieces of evidence (Wichmann and Ardern, 2019), that reveal the �ne-tuning of
the genetic code and its high degree of optimization for function, are added to the score
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Table 8: Combined p-values padjcomb for the divisibility patterns of Genesis 1:1 (G11), the
genetic code (GC) and Jesus Christ (JC). These combined p-values are computed from
(A.40)-(A.43), making use of unadjusted p-values pGC, pJC, and pG11, and the six multiple
testing scenarios of Table 7. The unadjusted p-value pGC of the genetic code varies, with
the lowest value pGC = 4.1056 · 10−21 corresponding to (A.19), whereas pGC = 10−18

and pGC = 10−14 represent possible p-values for a chemical evolutionary null hypothesis
model. The other two unadjusted p-values pJC = 7.3046 · 10−4 and pG11 = 4.3383 · 10−5
are de�ned in (A.33) and (A.36). The results for Scenario 6 and pGC = 10−14 are reported
as blue text in Figure 1.

pGC
Scenario 4.1056 · 10−21 10−18 10−14 10−10 10−6

1 2.77 · 10−25 5.65 · 10−23 4.04 · 10−19 2.70 · 10−15 1.63 · 10−11
2 1.63 · 10−18 3.13 · 10−16 1.95 · 10−12 1.04 · 10−8 5.30 · 10−6
3 2.97 · 10−15 5.52 · 10−13 3.18 · 10−9 1.48 · 10−5 7.42 · 10−4
4 1.85 · 10−13 3.35 · 10−11 1.80 · 10−7 7.29 · 10−4 3.84 · 10−3
5 3.90 · 10−12 6.91 · 10−10 3.48 · 10−6 1.04 · 10−2 1.04 · 10−2
6 4.63 · 10−11 8.01 · 10−9 3.78 · 10−5 2.14 · 10−2 2.14 · 10−2

function SGC, it is likely that the resulting p-value for an evolutionary null hypothesis
gets considerably smaller than in Makukov and Shcherbak (2018).

It is also likely to assume that nucleon numbers' divisibility by 37 has no selective advan-
tage. It is therefore very challenging for an evolutionary process to produce a genetic code
for which the numerical values of 13 pre-speci�ed amino acid word groups are divisible
by 37. This suggests that the p-value (pGC) of an evolutionary null hypohtesis, based on
our divisibility count score function SGC, is well beyond 10−10, and not too far away from
the value 4.11 · 10−21 obtained with the null hypothesis in (A.10). In Table 8 we illustrate
adjusted and combined p-values for GC, G11, and JC, assuming that the genetic code is
generated by an evolutionary process with di�erent values of pGC. It can be seen that
padjcomb remains small for all realistic values of pGC and all six multiple testing scenarios of
Table 7.
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